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Abstract--New analytical solutions to the problem of steady heat conduction from the wall with longi- 
tudinal fins to the environment are derived. Within the two media two temperature fields are harmonic 
functions with rigorous conjugation of temperature and normal flux along the interface between the two 
components. First, for high values of the ratio e = kj/k2, with k~ and k 2 being thermal conductivities of the 
grooved wall and environment, respectively, we derive the optimal fin contour providing extreme heat flux 
(total heat dissipation) from the fin surface at prescribed fin cross-sectional area. This optimizer is found 
in the class cf arbitrary curves and both necessary and sufficient extremum conditions are satisfied. The 
extreme line coincides with the contour of constant hydraulic gradient calculated by Polubarinova-Kochina 
for a seepage, flow under a concrete dam. At arbitrary e the same isoperimetric problem is solved in the 
class of elliptic fins assuming fin spacing large enough to consider an isolated profile. Two non-trivial local 
extrema exist depending on e. For arbitrary e the case of long rectangular fins with arbitrary direction of 
the outer fielcl is studied. Streamline refraction illustrates non-trivial fluxes near the finger tips and roots. 

Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Intuitively engineers understand very well that 
extended surfaces exhibit better heat dissipation 
properties than flat walls or pipes. So grooved bound- 
aries of  contact  between two media with different con- 
ductivity values like metal -a i r  are widely used in prac- 
tice. Duffin [1] seems to be the first who used a 
rigorous mathematical  model  to optimize the shape 
of  a cooling fin (rib, protrusion, groove). His idea was 
developed for various wall geometries and models [2- 
5]. In the simplest case, optimization is described by 
an isoperimetric problem : what is the shape of  a fin 
and fin spacing that provides maximum value of  the 
total heat dissipation at prescribed fin volume (cross- 
sectional area)? 

In all of  the bibliography available to us, fin opti- 
mization was done in terms of  one-dimensional 
models, i.e. tempe::ature did not  vary across the fin. 
Surprisingly, to our knowledge the powerful tech- 
nique developed for two-dimensional, three-dimen- 
sional optimal shape design, in other fields of  con- 
t inuum mechanics [6, 7], not  adequately utilized to 
problems of  fin optimization. Meanwhile, Aziz [2] 
wrote : 'an interesting area that awaits exploration is 
the optimization of  fins incorporating a two-dimen- 
sional (2-D) conduction model. '  

In this paper we solve 2-D problems of  optimization 
of  cooling fins. We conserve the following assump- 
tions of  Aziz : 

(1) heat conduction is steady-state ; 

(2) conductivity of  the fin and its base is constant ; 
(3) there is no heat generation in the fin ; 
(4) there is perfect thermal contact between the 

base of  the fin and the primary surface. 
In contrast with the previous works mentioned we 

do not assume that environment temperature T2 is 
constant and that heat flux is proport ional  to the 
difference between T2 and the fin temperature T]. We 
assume the Fourier  law v = - - k V T w h e r e  v is the flux 
vector and hence search for two harmonic tem- 
perature functions 

AT~ = 0 ,  A T 2 = O  (1) 

within the two media of  constant conductivities k] 
and k2. Temperatures conjugate along the interface 
between the base (fin) and environment according to 
the routine conditions : 

T1 = 7"1, k ldT1 /On=kzOT2/On .  (2) 

Mathematical  equivalence between thermal, elec- 
trical and fluid concentration fields in non- 
homogeneous media described by equations (1) and 
(2) allows for utilization of  interdisciplinary analogies 
and extension of  some known solutions from these 
specific areas to the heat transfer problems. In what 
follows we shall employ the schemes and results con- 
sidered in hydrology to obtain simple analytical solu- 
tions to the isoperimetric problems of  optimal finning. 
For  this purpose we use the results by Kacimov [8], 
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T~,T~ 
kl, k2 
L 
Q 

NOMENCLATURE 

fin and environment temperature x, y 
fin and environment conductivity a, b 
fin spacing 2h 
total flux through one element of u, v 
periodic structure 
total flux through a fin 
heat flux in the environment 
sufficiently far from fins 
fin cross-sectional area 

cartesian coordinates 
elliptic fin semiaxes 
width of rectangular fins 
horizontal and vertical components of 
thermal gradient. 

Greek symbol 
p shape factor. 

Kacimov and Obnosov [9], Obdam and Veling [10] 
and Obnosov [11]. 

2. IDEALLY CONDUCTIVE WALL 

Consider a wall with longitudinal fins spaced dis- 
tance L apart (Fig. 1). For  simplicity we assume that 
a fin BFC is symmetric about the Oy-axis. Denote 
the cross-sectional area confined by BFC as S. We 
prescribe the value of thermal gradient, J, at y 
~ .  Total flux passing through one element of our 

structure is Q = k2JL. In this section we assume that 
kl >> k2 and hence the boundary ABFCD is isothermic 
(say T2 = 0 along this line). Therefore we retain only 
the second equation in (1). Near the fin T2 is essentially 
2-D. We designate as q the total value of flux passing 
through the fin (this quantity is expressed as an inte- 
gral of k2VT2 along BFC). Obviously, Q - q  cor- 
responds to the flux from the fiat part of the wall. 

How much heat can be dissipated by arbitrary fin 
of prescribed volume? To answer this question we 
solve the following optimization problem : 

Problem 1 
For given L, Q, q determine the fin shape providing 

extreme value of S. It is easy to show that the problem 
under consideration is equivalent to one solved by 
Kacimov [8] for a groundwater flow. Namely, Q cor- 
responds to the total flow rate through one strip of 

T 2 = constant 

L ~, 

~y  I J 

D CI B AI _ x 

Fig. 1. Periodic system of fins. 

k z, T 2 

the system, and q is equivalent to the asymptotic 
plume size. 

Hence the unique, global maximum in problem 1 
can be written in explicit form 

L 2 ~q 
Sma x -- ~ - ~ l n c o s ~ .  

Note, that both the necessary and sufficient con- 
ditions to this maximum are rigorously satisfied. 

The left half CF of the extreme contour is described 
by the parametric equations 

L ~+cos(0) 
y = -- ~ l n ~ ,  

L sin 0 
x = - ~ t a n - '  ~x /~_~ ,  ~/2~<0~<~ (3) 

where e = cosec(gq/2Q). 
This curve coincides with the Polubarinova-Koch- 

ina [16] contour of a concrete dam of constant 
hydraulic gradient. Note, that this contour exhibits 
other interesting extreme features [8, 17]. At 
sufficiently large S curve (3) is close to an ellipse which 
semiaxes are plotted by Polubarinova-Kochina [16]. 

3. SINGLE FIN WITH ARBITRARY 
CONDUCTIVITY RATIO 

Let us consider the limiting case when L is large as 
compared with fin sizes such that we can consider a 
single fin. In contrast with the previous section con- 
ductivity ratio is arbitrary. Let the outer thermal 
gradient, J, sufficiently far from the fin, be per- 
pendicular to the fiat interface between the two media. 
Finally, assume temperature along the line ABOCA 
(Fig. 2) to be constant (this approximation is often 
made in 1-D models, see Aziz [2, 5]). Then, we can 
search for /'1 and T2 according to equations (1) and 
(2) in the upper half-plane. 

Though this problem seems very simple there are 
few analytic solutions which involve conjugation con- 
ditions in equation (2) in a rigorous form. More pre- 
cisely, for the 2-D case we know only one solution for 
a single elliptical (in particular, circular) inclusion [10, 
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Fig. 2. Elliptical fin with imposed gradient oriented along a 
semiaxis. 
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Fig. 3. Shape factor (nondimensional total flux through the 
fin) as a function of the axis ratio at different values of the 
conductivity ratio. Curves 1~5 correspond to e = 0.5, 4.5, 

8.5, 12.5, 16.5, 20.5, respectively. 

12] placed within the matrix of different conductivity. 
Though review of solutions for piece-wise harmonic 
fields is not  within the scope of our paper, we would 
like to mention ones for two circles and a checker- 
board structure [13-15]. In  what follows we shall just 
optimize an elliptical fin for a special case when the 
outer field is oriented along one of the two axes of the 
ellipse with semiaxes a and b. Within the fin T~ varies 
only with y (isotherms are shown in Fig. 2 by dashed 
lines) while T2 is two-dimensional. 

The known one.-dimensional model [4, 5] is based 
on the governing equation and boundary  conditions : 

d Vx( d T ]  
dyyL Y)-d-yy = fiT, TBoc = const, (dT/dy)e  = 0 

where x(y)  is the fin contour and fl is a constant  
depending on the third type boundary  condit ion along 
BFC. Noteworthy, that substituting of the rigorous 
2-D, two-component solution for a semi-elliptical 
fin into this equation (recall the condition 
/'1 = T2 = const along ACOBA!) will result in dis- 
crepancy fiT. 

To estimate temperature conduction from the fin 
we solve the following problem : 

Problem 2 
At the given k~, k2, J and the fin area S, define the 

axis ratio g = b/a that gives an extreme value of total 
flux q through the fin. 

In the previous section we ignored temperature dis- 
tr ibution within the fin and optimized its shape in 
the class of arbitrary profiles. Here we search for the 
optimal semi-elliptical fin. 

According to Obdam and Veling [10], q is 

a(a + b) 
q = ek2 ea+b ' 

then, the shape factor/~ is 

q 

# - k 2  ~-x/S- - -  

k2e(q+ 1) 

x / ~ ( e  T g) " 
(4) 

Obviously, only g />  0 and e ~> 0 are physically 

meaningful. By differentiating equation (4) we obtain 
that the equation d # / d g = 0  has two roots 
g1.2 = [e - 3 +__ x/(e - 1) (e - 9)]/2. Hence, for e < 9 the 
function #(g) is monotonic  and problem 2 has no 
solutions. For  e > 9 our problem exhibits two 
extrema, namely a local min imum and a local 
maximum. Obviously, if we impose an additional 
restriction in problem 2, for instance g ~< const, the 
local extremum can become a global one. At e --* oo 
we obtain gm,x ~ OO and gmin ~ 1. In other words, the 
local min imum passes into a global one. It coincides 
with results from the previous section at L ~ oo when 
the optimal ideally conductive fin obtained in the class 
of arbitrary curves is a semi-circle [18]. 

In Fig. 3 the functions/~(.q) are plotted (curves 1-6 
correspond to conductivities ratio e = 0.5, 4.5, 8.5, 
12.5, 16.5, 20.5, respectively) illustrating appearance 
and behavior of  the extrema (marked points on the 
graphs). Local maxima in these curves show that for 
sufficiently conductive fins their shaping can improve 
dissipation properties, as compared with close forms. 

The question is open whether relations and graphs 
presented may be used as estimations of q for non-  
elliptical fins. 

4. PERIODIC RECTANGULAR FINS 

Let us consider a wall grooved by a periodic system 
of rectangular fins of width 2h, length p and step L 
(Fig. 4a). For  arbitrary L and h it seems very difficult 
to find an analytical solution to problem (1) and (2) 
and we employ the results obtained by Obnosov [11] 
and developed by Kacimov and Obnosov [9]. Namely, 
we study a special case when L = 2h, p ~ oo. Clearly, 
this geometry is very specific. However, it is com- 
pensated by simplicity of explicit solutions that enable 
to elucidate 'fine' characteristics of temperature dis- 
tributions in the two media. 

We assume that the flux J(u~, Vow) is fixed in the 
environment  at x ~ - oo. F rom Obnosov [11] we can 
write out the horizontal and vertical components  of 
the gradient at e > 1 
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Fig. 4. Saw-type wall with rectangular fins (a) and schematic decomposition into five zones with different 
temperature patterns (b). 

1 F u, -- ~cos( ,~0,  -3~7) (c~  + c 2 / V )  

1 
v~ = ~ sin(20j - 3~),)(c~ F -  c:/F) 

u2 = cos(20~ + 7r7)(c~ F+ c2/F) 

v2 = -s in(201 +nT)(c~F-c2/F) (5) 

and at e < 1 

//1 = 1 sin(201 -- 3~7)(Cl F-- c2/F) 

1 
v i = ~ cos(201 -- 3zc7) (Cl F +  c2/F) 

u2 -- - sin(20~ + zr7)(c ~ F-- c2/F) 

v2 = -cos(201 +Try)(c~F+c2/F). (6) 

In equations (5) and (6), subscript 1 corresponds to 
fins and 2 corresponds to the environment.  Besides, 
we used the following designations : 

z~x roy kl - k 2  kl + k 2  
x l = 2 h '  Y ' = 2 h '  D = k ~ ' A -  2k, 

cos(nT) - x / Z - D  
2 ' 

D 2 ( ~/2, x > 0  
cos(zM)= 1 - ~ - ,  00 (-z~/2,  x < 0  K 

l cosyl  {cosh xj + sinyl'yv2 
0j = t a n -  s inhxl  +00, F =  \ c o s h x l - - s i n y l J  

U ~  /2oo Uoo V ~  

(7) 

Thus, equations (5)-(7) present formulae for flux 
components in terms of physical and geometrical par- 

ameters expressed in elementary functions (for  more 
general case of finite p they involve elliptic functions). 

From these formulae it is easy to show that at x 
+ oo the flux is 

2 2 
u~ = l + ~ U ~ ,  v7 = f~eVo~  

wherefrom we conclude that the flux vector at the 
'right'  infinity in the fins is colinear with one at the 
'left' infinity in the environment  and their values differ 
at most twice. 

Analogously, 

k2 oo 
U~ = k~U, , v~ = v~ 

which represents the trivial pattern of 1-D flux refrac- 
tion in a layered medium sufficiently far right from 
the fin tips. 

To plot the streamlines we integrate the system of 
ordinary differential equations 

dx/dt = u(x,y), dy/dt = v(x,y) (8) 

using the routine fourth-order Runge-Kut t a  method. 
In Fig. 5 streamlines are shown for one strip of  our 

cascade at u~ -- v~ = 0.5 and (a) kl -- 10, k2 = 1 (b) 
k~ = 1, k2 = 5, respectively. To plot these lines we 
selected l0 points at y/h = -2 ,  x/h = - 2 + 0 . 0 2  m, 
m -- 1, 10 and traced them till y/h -- 2 according to 
equation (9). 

Figure 6 illustrates in a larger scale one element of 
the fin with nontrivial streamline pattern. Namely, we 
traced again particles with initial conditions 
y/h = - 1 . 5 ,  x/h = - 0 . 2 + 0 . 0 5  m and split out the 
region - 0 . 2  < x < 0.4. Trajectories 1-4 show 'rever- 
sal' of  streamlines near the tip edge. Clearly, initial 
conditions in equation (8) can be chosen arbitrarily. 

If  we return to the general case of finite p from 
intuit ion and calculations made we infer that at 
sufficiently high p/h value temperature in our 'saw- 
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Fig. 5. Streamlines r~ear a strip at u~ = v~ = 0.5 and: (a) 
k l =  10, k 2 = l ; ( b )  k l =  1, k2=5. 
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Fig. 6. Finer streamline picture near the edge point of a strip. 

type' structure can be decomposed into five zones 
(Fig. 4b). Zones ] and V represent 1-D field in the 
homogeneous wall and environment.  In zone III we 
have routine refraction in a layered medium. Zones II 
and IV are mirror-symmetric and exhibit essentially 
2-D fields near the fin tips and roots, respectively. 
Obviously, in the large scale, i.e. sufficiently far from 
the grooves, flux components in zones I and V are 
related through ~Lhe standard refraction condit ion 
along an effectively fiat boundary,  shown in Fig. 4b 
by a dashed line. 

What  is the advantage of solutions above as com- 
pared with standard F D M  or FEM procedures? 
Numerical solutions to equation (1) are usually per- 
formed for discrete meshes with a posteriori approxi- 

mat ion of fluxes while equations (5)-(7) are directly 
expressed in terms of gradient. Obviously, any real 
cooling structure exhibits more complex geometry 
than we studied and numerical approaches should be 
used. Analytical solutions serve as check points for 
computer codes and as a means to elucidate nontrivial  
peculiarities of temperature fields which can be other- 
wise blurred or overlooked. 

5. CONCLUSIONS 

Problems of steady 2-D heat conduction from 
developed surfaces are solved in explicit rigorous 
form. For  high conductivity of the wall material opti- 
mal shape design, for equidistantly spaced fins, is per- 
formed. The fin confines extreme area at prescribed 
total fluxes from the fin and the whole period of the 
system is shown to coincide with the known contour 
of a concrete dam of constant  hydraulic gradient 
determined by Polubarinova-Kochina [16]. This 
unique global extremum is found in the class of arbi- 
trary curves. In the case of finite ratio of conductivities 
of the wall and environment optimization is made for 
a single fin and in the class of elliptic curves. Depend- 
ing on the ratio two nontrivial local extrema exist, a 
maximum and a minimum. For  a system of semi- 
infinite rectangular fins with arbitrary ratio and orien- 
tation of the outer gradient at infinity, thermal gradi- 
ent distribution is determined. This problem involves 
two harmonic fields which conjugate by two con- 
ditions of temperature and normal flux continuity 
along the periodic interfaces. 
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